32-Channel Sample/Hold Amplifier with a Single Multiplexed Input

Abstract

General Description The MAX5165 contains four 1-to-8 multiplexers and 32 sample/hold amplifiers. A single analog input connects to all four internal 1-to-8 multiplexers. The sample/hold amplifiers are organized into four octal sample/holds with independent TTL/CMOS-compatible track/hold enables for each octal set. Additional 3-bit TTL/CMOScompatible address logic selects the 1-to-8 multiplexer channel. Clamping diodes on each output allow clamping between two external reference voltages. The MAX5165 is available with an output impedance of $50 \Omega, 500 \Omega$, or $1 \mathrm{k} \Omega$, allowing output filtering. The MAX5165 operates with +10 V and -5 V supplies and a separate +5 V digital logic supply. Manufactured with a proprietary BiCMOS process, it provides high accuracy, fast acquisition time, low droop rate, and a low hold step. The device acquires 8 V step input signals to 0.01% accuracy in $2.5 \mu \mathrm{~s}$. Transitions from sample mode to hold mode result in only a 0.5 mV error. While in hold mode, the output voltage slowly droops at a rate of $1 \mathrm{mV} / \mathrm{sec}$. The MAX5165 is available in a 48 -pin TQFP package.

Applications Automatic Test Equipment (ATE) Industrial Process Controls Arbitrary Function Generators Avionics Equipment

- 32-Channel Sample/Hold
- Output Clamping
- 0.01\% Accuracy of Acquired Signal
- 0.01\% Linearity Error
- Fast Acquisition Time: $\mathbf{2 . 5 \mu \mathrm { s }}$
- Low Droop Rate: $1 \mathrm{mV} / \mathrm{sec}$
- Low Hold Step: 0.25 mV
- Wide Output Voltage Range: +7V to -4V

Ordering Information

PART	TEMP. RANGE	PIN- PACKAGE	Rout (Ω)
MAX5165LCCM	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	48 TQFP	50
MAX5165MCCM	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	48 TQFP	500
MAX5165NCCM	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	48 TQFP	1 k
MAX5165LECM	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	48 TQFP	50
MAX5165MECM	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	48 TQFP	500
MAX5165NECM	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	48 TQFP	1 k

For free samples \& the latest literature: http://www.maxim-ic.com, or phone 1-800-998-8800. For small orders, phone 1-800-835-8769.

32-Channel Sample/Hold Amplifier with a Single Multiplexed Input

ABSOLUTE MAXIMUM RATINGS

VDD to AGND	.-0.3V to +11.0V
VSS to AGND	-6.0V to +0.3V
$V_{\text {DD }}$ to VSS	+15.75V
VL to DGND	-0.3V to +6.0 V
VL to AGND	-0.3V to +6.0V
DGND to AGND	-0.3V to +2.0V
IN to AGND.	VSS to VDD
A_, M_ to DGND	-0.3V to +6.0 V
CH, CL to AGN	.-6.0V to +11.0V
Maximum Curre $\pm 10 \mathrm{~mA}$

Continuous Power Dissipation ($\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$)	
48-pin TQFP (derate $12.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)........ 1000 mW	
Operating Temperature Ranges	
MAX5165_CCM	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
MAX5165_ECM	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10sec)	$+300^{\circ} \mathrm{C}$
Maximum Current into CH, CL, PIN	$\pm 80 \mathrm{~mA}$

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

$\left(V_{D D}=+10 \mathrm{~V}, \mathrm{~V}_{S S}=-5 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=+5 \mathrm{~V} \pm 5 \%, A G N D=\mathrm{DGND}, \mathrm{R}_{\mathrm{L}}=5 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{T}_{A}=\mathrm{T}_{\mathrm{MIN}}\right.$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
ANALOG SECTION							
Linearity Error		$-4 \mathrm{~V}<\mathrm{VIN}<+7 \mathrm{~V}, \mathrm{RL}=\infty$			0.01	0.08	\%
Hold Step	VHS	$\mathrm{IN}=$ AGND			0.25	1.00	mV
Droop Rate	Δ Vout_ $^{\text {d }}$	IN = AGND, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			1	40	$\mathrm{mV} / \mathrm{sec}$
Offset Voltage	Vos	$\mathrm{IN}=\mathrm{AGND}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		-30	-5	30	mV
		$+15^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+65^{\circ} \mathrm{C}$ (Note 1)			20	40	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Output Voltage Range	Vout_	$R \mathrm{~L}=\infty$		$\begin{gathered} V_{S S}+ \\ 0.75 \end{gathered}$		$\begin{gathered} \text { VDD - } \\ 2.4 \end{gathered}$	V
Analog Crosstalk		8 V step with 500 ns rising edge (Note 1)	MAX5165L, CL = 250pF	-72	-76		dB
			MAX5165M, CL = 10nF	-72	-76		
			MAX5165N, CL = 10nF	-72	-76		
Input Capacitance	CIN				10	20	pF
DC Output Impedance	Rout_	$R \mathrm{~L}=\infty, \mathrm{CL}=250 \mathrm{pF}$	MAX5165L	35	50	65	Ω
			MAX5165M	350	500	650	
			MAX5165N	700	1000	1300	
Output Source Current	ISOURCE			2			mA
Output Sink Current	ISINK			2			mA
Output Clamp High	V_{CH}			VSS		VDD	V
Output Clamp Low	VCL			VSS		VDD	V
TIMING PERFORMANCE							
Acquisition Time	$t_{A Q}$	8 V step to $0.08 \%, \mathrm{RL}_{\mathrm{L}}=\infty$, Figure 2 (Note 2)			2.5	4	$\mu \mathrm{s}$
		$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, 100 \mathrm{mV} \text { step to } \pm 1 \mathrm{mV}, R \mathrm{~L}=\infty, \\ & \text { Figure } 2 \text { (Note 2) } \end{aligned}$			1		
Hold-Mode Settling Time	th	To $\pm 1 \mathrm{mV}$ of final value, Figure 2 (Note 1)			1	2	$\mu \mathrm{s}$
Aperture Delay	tap	Figure 2 (Note 1)				200	ns
Inhibit Pulse Width	tPW	Figure 2 (Note 1)		200			ns
Data Hold Time	tDH	Figure 2 (Note 1)		150			ns
Data Setup Time	tDS	Figure 2 (Note 1)		50			ns

32-Channel Sample/Hold Amplifier with a Single Multiplexed Input

ELECTRICAL CHARACTERISTICS (continued)

$\left(V_{D D}=+10 \mathrm{~V}, \mathrm{~V}_{S S}=-5 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=+5 \mathrm{~V} \pm 5 \%, \mathrm{AGND}=\mathrm{DGND}, \mathrm{R}_{\mathrm{L}}=5 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}\right.$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
DIGITAL INPUTS						
Input Voltage High	V_{IH}		2.0			V
Input Voltage Low	VIL				0.8	V
Input Current	I	$\mathrm{A}_{-}=$DGND or $\mathrm{V}_{\mathrm{L}}, \mathrm{M}_{-}=$DGND or V_{L}	-1		+1	$\mu \mathrm{A}$
POWER SUPPLIES						
Positive Analog Supply Voltage	VDD	(Note 3)	9.5	10	10.5	V
Negative Analog Supply Voltage	VSS	(Note 3)	-4.75	-5.0	-5.45	V
Digital Logic Supply Voltage	VL		4.75	5	5.25	V
Positive Analog Supply Current	IDD	RL $=\infty$			36	mA
Negative Analog Supply Current	Iss	RL $=\infty$			36	mA
Digital Logic Supply Current	IL	$\begin{aligned} & \text { A0-A3 = DGND or } V_{L} ; \\ & \text { M0, M1, M2 = DGND or } V_{C C} \end{aligned}$			0.5	mA
Digital Logic Supply Current	IL	$\begin{aligned} & \mathrm{A} 0-\mathrm{A} 3=0.8 \mathrm{~V} \text { or } 2 \mathrm{~V} ; \\ & \mathrm{M} 0, \mathrm{M} 1, \mathrm{M} 2=0.8 \mathrm{~V} \text { or } 2 \mathrm{~V} \end{aligned}$			5	mA
Power-Supply Rejection Ratio	PSRR	For both $V_{D D}$ and $V_{S S}$ in sample mode, $\mathrm{V}_{\mathrm{IN}}=0$	-60	-75		dB

Note 1: Guaranteed by design.
Note 2: Only one M_ input may be asserted low at a time, so only one channel is selected (see Single vs. Simultaneous Sampling). Note 3: Do not exceed the absolute maximum rating for $V_{D D}$ to $V_{S S}$ of +15.75 V (see Absolute Maximum Ratings).

32-Channel Sample/Hold Amplifier with a Single Multiplexed Input

$\left(V_{D D}=+10 V, V_{S S}=-5 V, V_{L}=+5 V, I N=G N D, R_{L}=\infty, C_{L}=0, A G N D=D G N D, V_{C H}=V_{D D}, V_{C L}=V_{S S}, T_{A}=+25^{\circ} C\right.$, unlesS otherwise noted.)

OFFSET VOLTAGE vs. INPUT VOLTAGE

32-Channel Sample/Hold Amplifier with a Single Multiplexed Input

Figure 1. Functional Diagram

32-Channel Sample/Hold Amplifier with a Single Multiplexed Input

PIN		
NAME	P7, 48	A2, A0, A1
$2-5$	M0-M3	Address Inputs. The input of a 3-to-8 decoder, which controls channel selection for all four 1-to-8 multiplexers simultaneously. Selects which output channels are connected to the input during sample mode (Tables 1, 2).
6	VL	Mode-Selection/Multiplexer-Enable Inputs 0 to 3. Independent controls for each of the four 1-to-8 multiplexers. A logic low enables sample mode by connecting the selected channel (via address inputs A2, A1, A0) to IN. A logic high selects hold mode (Tables 1, 2).
7	DGND	Dositive Digital Logic Power-Supply Input Ground
8	VSS	Negative Analog Power-Supply Input
9	AGND	Analog Ground
10	IN	Analog Input. Connects to the input of all four internal 1-to-8 multiplexers.
11	CH	Clamp High Input. Clamps Vout to (VCH + 0.7V).
12	CL	Clamp Low Input. Clamps Vout to (VCL - 0.7V).
13	N.C.	No Connection. Not internally connected.
$14-29$	OUTO-OUT15	Sample/Hold Outputs 0 to 15
30	VDD	Positive Analog Power-Supply Input
$31-46$	OUT16-OUT31	Sample/Hold Outputs 16 to 31

Detailed Description

The MAX5165 connects a single analog input to the inputs of four internal 1-to-8 analog multiplexers. Each multiplexer channel connects to a buffered sample/hold circuit and a series output resistor, creating a singleinput device with 32 sample/hold output channels. Three multiplexer channel-address inputs and four mode-select inputs (one for each multiplexer) control channel selection and sample/hold functions (Figure 1 and Tables 1, 2).

Digital Interface

Three address pins and 3-to-8 address decoder logic select the channel for all four internal analog multiplexers. The mode-select inputs (M3-M0) independently control the sample/hold functions for each multiplexer (Tables 1, 2).

Sample/Hold

The MAX5165 contains 32 buffered sample/hold circuits with internal hold capacitors. Internal hold capacitors minimize leakage current, dielectric absorption, feedthrough, and required board space. The value of the hold capacitor affects acquisition time and droop rate. Lower capacitance allows faster acquisition times but increases the droop rate. Higher values increase hold time and acquisition time. The hold capacitor used in the MAX5165 provides fast $2.5 \mu \mathrm{~s}$ (typ) acquisition time while maintaining a low $1 \mathrm{mV} / \mathrm{sec}$ (typ) droop rate, making the sample/hold ideal for high-speed sampling.

32-Channel Sample/Hold Amplifier with a Single Multiplexed Input

Table 1. Output Selection

ADDRESS			OUTPUT SELECTED			
A2	A1	A0	MUX0	MUX1	MUX2	MUX3
0	0	0	OUT0	OUT8	OUT16	OUT24
0	0	1	OUT1	OUT9	OUT17	OUT25
0	1	0	OUT2	OUT10	OUT18	OUT26
0	1	1	OUT3	OUT11	OUT19	OUT27
1	0	0	OUT4	OUT12	OUT20	OUT28
1	0	1	OUT5	OUT13	OUT21	OUT29
1	1	0	OUT6	OUT14	OUT22	OUT30
1	1	1	OUT7	OUT15	OUT23	OUT31

$0=$ Logic Low, $1=$ Logic High

Table 2. Mode Selection

MODE-SELECT INPUTS (M3-M0)	ACTION
0	Sample mode enabled on selected analog multiplexer and channel (Table 1).
1	Hold mode enabled on selected analog multiplexer and channel (Table 1).

$0=$ Logic Low, $1=$ Logic High

* Only one $M_{\text {_ }}$ input asserted low; all others must be logic high to meet the timing specification (see Single vs. Simultaneous Sampling section).

Sample Mode

Driving M3-M0 low (one at a time) selects sample mode (Tables 1, 2). During sample mode, the selected multiplexer channel connects to IN , allowing the hold capacitor to acquire the input signal. To guarantee an accurate sample, maintain sample mode for at least $4 \mu \mathrm{~s}$. The output of the S / H amplifier tracks the input after $4 \mu \mathrm{~s}$. Only the addressed channel on the selected multiplexer samples the input; all other channels remain in hold mode.

Hold Mode

Driving M3-M0 high selects hold mode. Hold mode disables the multiplexer and disconnects all eight channels on the 1-to-8 multiplexer from the input. When a channel is disconnected, the hold capacitor maintains the sampled voltage at the output with a $1 \mathrm{mV} / \mathrm{sec}$ droop rate (towards $V_{D D}$).

Hold Step
When switching between sample mode and hold mode, the voltage of the hold capacitor changes due to charge injection from stray capacitance. This voltage change, called hold step, is minimized by limiting the amount of stray capacitance seen by the hold capacitor. The MAX5165 limits the hold step to 0.25 mV (typ). An output capacitor to ground can be used to filter out this small hold-step error.

Output

The MAX5165 contains an output buffer for each multiplexer channel (32 total), so the hold capacitor sees a high-impedance input, reducing the droop rate. The capacitor droops at a $1 \mathrm{mV} / \mathrm{sec}$ (typ) rate while in hold mode. The buffer also provides a low output impedance; however, the device contains output resistors in series with the buffer output (Figure 1) for selected output filtering. To provide greater design flexibility, the MAX5165 is available with an Ro of $50 \Omega, 500 \Omega$, or $1 \mathrm{k} \Omega$.
Note: Output loads increase the analog supply current (IDD and Iss). Excessive loading of the output(s) damages the device by consuming more power than the device will dissipate (see Absolute Maximum Ratings). The resistor-divider formed by the output resistor (ROUT) and load impedance ($R \mathrm{~L}$) scales the sampled voltage (VSAMP). Determine the output voltage (VOUT_) as follows:

$$
\begin{gathered}
\text { Voltage } \text { Gain }=A V=R L /(R L+\text { ROUT }) \\
\text { VOUT_ }=\text { VSAMP } \cdot A V
\end{gathered}
$$

The maximum output voltage range depends on the analog supply voltages available, and the scaling factor used:

$$
(\mathrm{VSS}+0.75 \mathrm{~V}) \cdot \mathrm{AV}^{5} \leq \text { Vout_ }_{-} \leq(\mathrm{VDD}-2.4 \mathrm{~V}) \cdot \mathrm{AV}
$$

when $R L=\infty$, then $A V=1$ and this equation becomes:

$$
(\mathrm{VSS}+0.75 \mathrm{~V}) \leq \text { Vout } \leq(\mathrm{VDD}-2.4 \mathrm{~V})
$$

32-Channel Sample/Hold Amplifier with a Single Multiplexed Input

Output Clamp

The MAX5165 clamps the output between two externally applied reference voltages. Internal diodes connect all outputs to the clamping voltages, restricting the output voltage to:

$$
V_{C H}+0.7 \mathrm{~V} \leq \text { Vout_ }_{-} \leq \mathrm{V}_{C L}-0.7 \mathrm{~V}
$$

When the clamping voltage exceeds the maximum output voltage, the maximum output voltage will be the limiting factor. To disable output clamping, connect CH to VDD and CL to VSS to set the clamping voltages beyond the maximum output voltage range. The clamping diodes allow the MAX5165 to be used with other devices requiring restricted input voltages.

Timing Definitions

Acquisition time ($\mathrm{t} A \mathrm{Q}$) is the amount of time the MAX5165 must remain in sample mode for the hold capacitor to acquire an accurate sample. The holdmode settling time (tH) is the amount of time necessary for the output voltage to settle to its final value. Aperture delay (tAP) is the time interval required to disconnect the input from the hold capacitor. The inhibit pulse width (tpw) is the amount of time the MAX5165 must remain in hold mode while the address is changed. The data setup time (tDS) is the amount of time an address must be maintained before the address becomes valid. The data hold time (t DH) is the amount of time that an address must be maintained after mode select has gone from low to high (Figure 2).

Applications Information

Control-Line Reduction

The MAX5165 contains four separate 1-to-8 multiplexers and individual mode selectors for each multiplexer. Configure the device to sample only one channel at a time or up to four channels (with the same address, see Table 1) simultaneously. When sampling one channel at a time, use an external 2 -to-4 decoder (with activelow outputs) to reduce the number of digital control lines from seven to five (Figure 3).

Single vs. Simultaneous Sampling
Individually control the four mode/multiplexer-select pins to simultaneously sample on four channels, the same channel for each multiplexer (Figure 4). Each mode-select pin controls sampling on one of the 1-to-8 multiplexers, while the 3-bit address selects one of the eight channels on all the multiplexers (Tables 1, 2). Setting any combination of the mode-select pins low enables sampling on the addressed channels for the selected multiplexers.
Simultaneously sampling two or more channels reduces offset voltage but increases acquisition time. Multiply the single-channel acquisition time by the number of channels sampling.

Figure 2. Timing Performance

32-Channel Sample/Hold Amplifier with a Single Multiplexed Input

Figure 3. Control-Line Reduction

Figure 4. Simultaneous Sampling

32-Channel Sample/Hold Amplifier with a Single Multiplexed Input

Multiplexed DAC

Figure 5 shows a typical demultiplexer application. Different digital codes are converted by the digital-toanalog converter (DAC) and then stored on 32 different channels of the MAX5165. The $100 \mathrm{mV} / \mathrm{sec}$ (max) droop rate requires refreshing the hold capacitors every 100 ms before the voltage drops by $1 / 2$ LSB for an 8 -bit DAC with a 5 V full-scale voltage.

Powering the MAX5165
The MAX5165 does not require a special power-up sequence to avoid latchup. The device requires three separate supply voltages for operation; however, when one or two of the voltages are not available, DC-DC charge-pump (switched-capacitor) converters provide a simple, efficient solution. The MAX860 provides voltage doubling or inversion, ideal for conversions from +5 V to +10 V or from +5 V to -5 V . The MAX860 also functions as a voltage divider to provide conversion from +10 V to +5 V .

Figure 5. Multiplexing a DAC

32-Channel Sample/Hold Amplifier with a Single Multiplexed Input

NDTES:

1. ALL DIMENSIZNING AND TロLERANCING CDNFGRM Tロ ANSI Y14.5-1982
2. CONTROLLING DIMENSIDN: MILLIMETER
3. THIS GUTLINE CUNFIRMS TU JEDEC PUBLICATIUN 95 REGISTRATIUN MD-136, VARIATIUNS BC, BE AND BJ.

JEDEC VARIATILN						
	BC		BE		BJ	
	32 LEAD		48 LEAD		64 LEAD	
	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.
A	---	1.60	---	1.60	---	1.60
A_{1}	0.05	0.15	0.05	0.15	0.05	0.15
A_{2}	1.35	1.45	1.35	1.45	1.35	1.45
D	8.90	9.10	8.90	9.10	12.00 BSC.	
D_{1}	7.00 BSC.		7.00 BSC.		10.00	BSC.
E	8.90	9.10	8.90	9.10	12.00	BSC.
E_{1}	7.00 BSC.		7.00 BSC.		10.00	BSC.
e	0.8 BSC.		0.5 BSC.		0.5 BSC.	
L	0.45	0.75	0.45	0.75	0.45	0.75
b	0.30	0.45	0.17	0.27	0.17	0.27
c	0.09	0.20	0.09	0.20	0.09	0.20
a.	0°	7°	0°	7*	0°	7°

APPRIVAL	DICCMENT CINTREL NG	ReV	
	21-0054	C	$1 / 1$

32-Channel Sample/Hold Amplifier with a Single Multiplexed Input

NOTES

